skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Biao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The breakthrough in cryo-electron microscopy (cryo-EM) technology has led to an increasing number of density maps of biological macromolecules. However, constructing accurate protein complex atomic structures from cryo-EM maps remains a challenge. In this study, we extend our previously developed DEMO-EM to present DEMO-EM2, an automated method for constructing protein complex models from cryo-EM maps through an iterative assembly procedure intertwining chain- and domain-level matching and fitting for predicted chain models. The method was carefully evaluated on 27 cryo-electron tomography (cryo-ET) maps and 16 single-particle EM maps, where DEMO-EM2 models achieved an average TM-score of 0.92, outperforming those of state-of-the-art methods. The results demonstrate an efficient method that enables the rapid and reliable solution of challenging cryo-EM structure modeling problems. 
    more » « less
  2. Vitrimers have the characteristics of shape-reforming and surface-welding, and have the same excellent mechanical properties as thermosets; so vitrimers hold the promise of a broad alternative to traditional plastics. Since their initial introduction in 2011, vitrimers have been applied to many unique applications such as reworkable composites and liquid crystal elastomer actuators. A series of experiments have investigated the effects of reprocessing conditions (such as temperature, time, and pressure) on recycled materials. However, the effect of particle size on the mechanical properties of recycled materials has not been reported. In this paper, we conducted an experimental study on the recovery of epoxy-acid vitrimers of different particle sizes. Epoxy-acid vitrimer powders with different particle size distributions were prepared and characterized. The effects of particle size on the mechanical properties of regenerated epoxy-acid vitrimers were investigated by dynamic mechanical analysis and uniaxial tensile tests. In addition, other processing parameters such as temperature, time, and pressure are discussed, as well as their interaction with particle size. This study helped to refine the vitrimer reprocessing condition parameter toolbox, providing experimental support for the easy and reliable control of the kinetics of the bond exchange reaction. 
    more » « less
  3. Abstract The chemically crosslinked network structures make epoxies, the most common thermosets, unable or hard to be recycled, causing environmental problems and economic losses. Epoxy‐based vitrimers, polymer networks deriving from epoxy resins, can be thermally malleable according to bond exchange reactions (BERs), opening the door to recycle epoxy thermosets. Here a series of experiments were carried out to study the effects of processing conditions (such as particle size distributions, temperature, time, and pressure) on recycling of an epoxy‐anhydride vitrimer. Polymer powders from the epoxy‐anhydride vitrimer with different size distributions were prepared and characterized, and the influence of particle size on the mechanical performance of recycled epoxy‐anhydride vitrimers was investigated by dynamic mechanical analysis and uniaxial tensile test. Experimental results demonstrated that finer polymer powders can increase the contacting surfaces of recycled materials and thus result in high quality of recycled materials. In addition, the influences of other treating parameters, such as temperature, time, and pressure, were also discussed in this study. Adjusting these treating parameters can help the design of an optimized reprocessing procedure to meet practical engineering applications. 
    more » « less